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LElTER TO THE EDITOR 

On the Schrodinger equation with a Gaussian potential 

M Cohen 
Department of Physical Chemistry, The Hebrew University, Jerusalem 91 904, Israel 

Received 6 December 1983 

Abstract. Eigenvalues and approximate eigenfunctions of the Schrodinger equation with 
an attractive radial Gaussian potential are obtained from a first-order perturbation treat- 
ment based on a scaled harmonic oscillator model. The bound-state energies are of 
comparable accuracy to those obtained using high-order perturbation theory or numerical 
integration. 

The solution of Schrodinger's equation with an attractive radial Gaussian potential, 
V(r) = - A  exp(-A?), has attracted a great deal of recent interest. Thus, Buck (1977 
unpublished; quoted by Bessis er a1 (1982)) and Crandall (1983) have calculated 
bound-state eigenvalues numerically, while Stephenson (1977) used the WKB approxi- 
mation. Rayleigh-Schrodinger perturbation theory based on Jacobi functions, and 
carried through first order only (Bessis et a1 1982), yields fair numerical accuracy, but 
the comparison (zero-order) Hamiltonian adopted is rather complex so that the 
calculation of the first-order matrix elements is by no means straightforward. By 
contrast, high-order perturbation theory based on a Taylor series expansion of V(r) 
combined with hypervirial Pad& analysis (Lai 1983) yields precise energies, but not 
wavefunctions. 

A simple alternative perturbation procedure, which yields approximate eigenfunc- 
tions as well as eigenvalues, is the following. The leading non-trivial term in the 
expansion of V (  r) is AAr2, suggesting that we choose as comparison Hamiltonian the 
operator Ho which describes the three-dimensional isotropic harmonic oscillator. Thus, 
we take 

Ho = - V2 + k2r2, (1) 
leaving k as a disposable scale parameter to be determined appropriately. The eigen- 
value problem is then amenable to  solution by means of conventional Rayleigh- 
Schrodinger perturbation theory with the perturbing operator given by 

H I  = - [k2r2+A exp(-Ar*)], (2) 

and different choices of k lead to representations which have been called rescaled 
(Banerjee 1979) or renormalised (Killingbeck 1981) perturbation series. 

The spectrum of Ho has been studied in detail (see e.g. Messiah 1961) and the 
eigenvalues take the form 

(n, I = O ,  1 ,2 , .  . . )  (3) E'O' = 
n/  (2p + 3) k = (4n + 21 + 3) k 

where, to eaeh value of p = 2n + 1, there correspond $( p +  1)( p + 2) energetically 
degenerate states of well defined angular momentum with quantum numbers 1 and m. 
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The corresponding eigenfunctions J/$i are products of normalised spherical harmonics 
Yfm(B, 4 )  and radial functions & ( r )  given by 

Rnl ( r )  = Nn, exp(-$kr’)r’lf;t’/’( kr’) (4) 

where Lf;tl/’( kr’) denotes an associated Laguerre polynomial. 
Examination of the eigenvalues computed previously (cf Lai 1983) shows that the 

lower levels of Ho+Hl  are almost degenerate, with a degeneracy pattern identical 
with that of the EL!’, so that our choice of Ho is sensible. It is also convenient, since 
matrix elements of H1 can be calculated without great difficulty with the functions i,!I!,yk. 

Because of the orthonormality of the spherical harmonics, it is necessary to calculate 
only radial integrals between states of the same 1. We find very easily that 

( 5 )  (mllr’lnl) = k-’{;(4n +21+3)6,,, -[(n + l ) (n  + I+3)]  3 1 / 2  6,,,n+l} 

and (for details, see the appendix) 

( m11exp(-Ar2)ln1) 
-kf+3/2 - A m+n ( m !  n! T ( m  + I+$)r(n + l + $ ) ] ” ’ / ( k  + A ) m t n + 1 + 3 / 2  

1 min(m,n) 

i=o 
X C  r( i + I +;)i! ( m  - i ) !  ( n  - i ) !  

so that the matrices of Ho and H1 are fully determined analytically. 

(correct to first order) by 
In particular, ‘the lowest energy level for each 1 (corresponding to n = 0) is given 

Eo1 = ($8’ W O  + H1 144’ ) = ( 1 + 1, k - fi ( t )  (7) 

f i ( t )  = t = k / ( k  + A ) .  (8) 

where 

Since equation (7) is a rigorous upper bound, we may now optimise Eo, with respect 
to k and obtain the result (valid for all A, A )  

A/A. (9) E0~=At[(1+~)( l - t ) -1] / (1- t ) ’ ,  (1 - t)’t‘+’/’ = 

Note that the optimised value, k = (AA)”’, leads to t = [1+  (A/A)’/’]-’  which is a fair 
approximation to the optimised t for low 1. 

Table 1 contains perturbation energies (correct to first order) calculated with k = 20 
and with optimised values of k,  compared with the most accurate values available 
(Crandall 1983, Lai 1983). The effect of optimising k is negligible for low 1, but 
becomes increasingly significant as 1 increases, and it is clear that with k optimised, 
i,!Ib!’ ( k )  provides a very satisfactory representation of these eigenfunctions. 

For n z l ,  the energy calculated from first-order perturbation theory is not a 
guaranteed upper bound unless constraints are placed on the variation of the scale 
parameter k. For example, for n = 1, we find that 

(10) 

and unconstrained variation of this expression yields energies which are slightly too 
low for low 1 (see table 1). However, these optimised perturbation energies are clearly 
excellent approximations to the true energy levels, whereas those calculated with 
k=(AA)’/’  are very much less accurate. Similar results are easily obtained for the 

Ell = ( 1  +I) k - [ t ’+ ( 1  +$)( 1 - t ) ’ ] f i (  t ) ,  
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Table 1. Calculated eigenvalues, -EnI. 

1 (1) 

0 341.771 5 
1 304.0681 
2 267.2077 
3 231.1502 
4 195.8573 
5 161.2927 
6 127.4216 
7 94.2110 

n = 0 states 
(2) (3) 

341.8831 341.8952 
304.4334 304.4627 
268.0554 268.1104 
232.7840 232.8746 
198.6594 198.7965 
165.7278 165.9248 
134.0435 134.3164 
103.67 19 104.040 1 

(4) 

341.8952 
304.4628 
268.1 107 
232.8753 
198.7983 
165.9282 
134.3226 
104.0512 

(1) 

268.4722 
233.1574 
198.5335 
164.5697 
131.2361 

98.5045 
66.3476 
34.7397 

n = 1 states 
(2) 

269.6802 
235.5181 
202.5141 
170.7122 
140.1660 
110.941 1 
83.1183 
56.8013 

(3) 

269.6445 
235.4500 
202.4313 
170.6393 
140.135 1 
110.9929 
83.3060 
57.1963 

(1) Perturbation results, k = 20. 
(2) Perturbation results, k optimised. 
(3) Variational results. 
(4) Accurate values from Crandall (1983) and Lai (1983). 

more highly excited states having n s 2 ,  and we may conclude that the functions 
+ $ ) ( k ) ,  with k optimised, are excellent first approximations to all the bound states. 

Energy levels of greater accuracy can be obtained quite easily by using variational 
trial functions which consist of linear combinations of the functions +$’( k ) ,  since these 
constitute a suitable complete orthonormal set for any fixed k. If we solve the 
appropriate secular equation, each eigenvalue can be optimised in turn and still yields 
a rigorous upper bound to one of the energy levels (MacDonald 1933), but the choice 
of k is expected to be much less critical once we include a few more terms of the set 
{ + $ ) ( k ) } .  It turns out that, with k chosen so as to optimise Eol (equation (9) above) 
the off -diagonal matrix element ( +$)/Ho + H I [  +$)) vanishes identically, showing that 
this choice of k is optimal for any linear combination of 4::) and +hi?). To obtain 
greater accuracy for the n = 0 eigenvalues, it is sufficient to solve a 2 X 2 secular equation 
based on +by’ and +$?) only with k chosen to optimise Eo/. We then obtain the 
‘variational’ results of table 1, and we note that Bessis et al (1982) obtained similar 
accuracy in their variational calculations based on Jacobi functions but required linear 
combinations of at least seven compared with just two employed here. 

Appendix 

The integrals (ml(exp( -Ar2)I nl)  may be written conveniently 

(ml(exp(-Ar*)Inl) =~NmfNnlI(m, n; ) ( ~ ) / k ’ + ~ ’ ~  (‘41) 
where 

and we have written 

x = kr2,  P = A / k ,  p =  1++* (A31 

The normalisation constant Nmf is obtained easily as a special case of (Al ) ,  using the 
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standard result (Abramowitz and Stegun 1965, (AS) (22.2.12)) 

~ ( m ,  n ;  0) = r ( n + p + i p , , / n ! .  

When p # 0, we rewrite 

I ( m ,  n ;  p )  = tP+' e-YyPLP,(ty)LP,(ty) dy sp 
where 

t = 1/(1 + p )  = k / ( k + A ) .  

Now, using AS (22.12.7), we may write 

and similarly for LP,(ty). Thus, on account of (A4), we have finally 

I (  m, n ;  CL) = tP+'( 1 - t)m+nr( + p +  i)r(n + p +  1) 

which yields equation (6) of the text. 
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