On the Schrodinger equation with a Gaussian potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L101
(http://iopscience.iop.org/0305-4470/17/3/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:53

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the Schrödinger equation with a Gaussian potential

M Cohen
Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel

Received 6 December 1983

Abstract

Eigenvalues and approximate eigenfunctions of the Schrödinger equation with an attractive radial Gaussian potential are obtained from a first-order perturbation treatment based on a scaled harmonic oscillator model. The bound-state energies are of comparable accuracy to those obtained using high-order perturbation theory or numerical integration.

The solution of Schrödinger's equation with an attractive radial Gaussian potential, $V(r)=-A \exp \left(-\lambda r^{2}\right)$, has attracted a great deal of recent interest. Thus, Buck (1977 unpublished; quoted by Bessis et al (1982)) and Crandall (1983) have calculated bound-state eigenvalues numerically, while Stephenson (1977) used the шкв approximation. Rayleigh-Schrödinger perturbation theory based on Jacobi functions, and carried through first order only (Bessis et al 1982), yields fair numerical accuracy, but the comparison (zero-order) Hamiltonian adopted is rather complex so that the calculation of the first-order matrix elements is by no means straightforward. By contrast, high-order perturbation theory based on a Taylor series expansion of $V(r)$ combined with hypervirial Padé analysis (Lai 1983) yields precise energies, but not wavefunctions.

A simple alternative perturbation procedure, which yields approximate eigenfunctions as well as eigenvalues, is the following. The leading non-trivial term in the expansion of $V(r)$ is $\lambda A r^{2}$, suggesting that we choose as comparison Hamiltonian the operator H_{0} which describes the three-dimensional isotropic harmonic oscillator. Thus, we take

$$
\begin{equation*}
H_{0}=-\nabla^{2}+k^{2} r^{2} \tag{1}
\end{equation*}
$$

leaving k as a disposable scale parameter to be determined appropriately. The eigenvalue problem is then amenable to solution by means of conventional RayleighSchrödinger perturbation theory with the perturbing operator given by

$$
\begin{equation*}
H_{1}=-\left[k^{2} r^{2}+A \exp \left(-\lambda r^{2}\right)\right], \tag{2}
\end{equation*}
$$

and different choices of k lead to representations which have been called rescaled (Banerjee 1979) or renormalised (Killingbeck 1981) perturbation series.

The spectrum of H_{0} has been studied in detail (see e.g. Messiah 1961) and the eigenvalues take the form

$$
\begin{equation*}
E_{n l}^{(0)}=(2 p+3) k=(4 n+2 l+3) k \quad(n, l=0,1,2, \ldots) \tag{3}
\end{equation*}
$$

where, to each value of $p=2 n+l$, there correspond $\frac{1}{2}(p+1)(p+2)$ energetically degenerate states of well defined angular momentum with quantum numbers l and m.

The corresponding eigenfunctions $\psi_{n l m}^{(0)}$ are products of normalised spherical harmonics $Y_{l m}(\theta, \phi)$ and radial functions $R_{n i}(r)$ given by

$$
\begin{equation*}
R_{n l}(r)=N_{n l} \exp \left(-\frac{1}{2} k r^{2}\right) r^{l} L_{n}^{l+1 / 2}\left(k r^{2}\right) \tag{4}
\end{equation*}
$$

where $L_{n}^{l+1 / 2}\left(k r^{2}\right)$ denotes an associated Laguerre polynomial.
Examination of the eigenvalues computed previously (cf Lai 1983) shows that the lower levels of $H_{0}+H_{1}$ are almost degenerate, with a degeneracy pattern identical with that of the $E_{n i}^{(0)}$, so that our choice of H_{0} is sensible. It is also convenient, since matrix elements of H_{1} can be calculated without great difficulty with the functions $\psi_{n l m}^{(0)}$.

Because of the orthonormality of the spherical harmonics, it is necessary to calculate only radial integrals between states of the same l. We find very easily that

$$
\begin{equation*}
\langle m l| r^{2}|n l\rangle=k^{-1}\left\{\frac{1}{2}(4 n+2 l+3) \delta_{m, n}-\left[(n+1)\left(n+l+\frac{3}{2}\right)\right]^{1 / 2} \delta_{m, n+1}\right\} \tag{5}
\end{equation*}
$$

and (for details, see the appendix)

$$
\begin{align*}
&\langle m l| \exp \left(-\lambda r^{2}\right)|n l\rangle \\
&= k^{l+3 / 2} \lambda^{m+n}\left(m!n!\Gamma\left(m+l+\frac{3}{2}\right) \Gamma\left(n+l+\frac{3}{2}\right)\right]^{1 / 2} /(k+\lambda)^{m+n+l+3 / 2} \\
& \times \sum_{i=0}^{\min (m, n)} \frac{1}{\Gamma\left(i+l+\frac{3}{2}\right) i!(m-i)!(n-i)!}\left(\frac{k}{\lambda}\right)^{2 i} \tag{6}
\end{align*}
$$

so that the matrices of H_{0} and H_{1} are fully determined analytically.
In particular, the lowest energy level for each l (corresponding to $n=0$) is given (correct to first order) by

$$
\begin{equation*}
E_{0 l}=\left\langle\psi_{0 l}^{(0)}\right| H_{0}+H_{1}\left|\psi_{0 l}^{(0)}\right\rangle=\left(l+\frac{3}{2}\right) k-f_{l}(t) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{l}(t)=A t^{l+3 / 2}, \quad t=k /(k+\lambda) . \tag{8}
\end{equation*}
$$

Since equation (7) is a rigorous upper bound, we may now optimise E_{0}, with respect to k and obtain the result (valid for all λ, A)

$$
\begin{equation*}
E_{0 l}=\lambda t\left[\left(l+\frac{3}{2}\right)(1-t)-1\right] /(1-t)^{2}, \quad(1-t)^{2} t^{t+1 / 2}=\lambda / A \tag{9}
\end{equation*}
$$

Note that the optimised value, $k=(\lambda A)^{1 / 2}$, leads to $t=\left[1+(\lambda / A)^{1 / 2}\right]^{-1}$ which is a fair approximation to the optimised t for low l.

Table 1 contains perturbation energies (correct to first order) calculated with $k=20$ and with optimised values of k, compared with the most accurate values available (Crandall 1983, Lai 1983). The effect of optimising k is negligible for low l, but becomes increasingly significant as l increases, and it is clear that with k optimised, $\psi_{0 l}^{(0)}(k)$ provides a very satisfactory representation of these eigenfunctions.

For $n \geqslant 1$, the energy calculated from first-order perturbation theory is not a guaranteed upper bound unless constraints are placed on the variation of the scale parameter k. For example, for $n=1$, we find that

$$
\begin{equation*}
E_{1 i}=\left(l+\frac{7}{2}\right) k-\left[t^{2}+\left(l+\frac{3}{2}\right)(1-t)^{2}\right] f_{l}(t), \tag{10}
\end{equation*}
$$

and unconstrained variation of this expression yields energies which are slightly too low for low l (see table 1). However, these optimised perturbation energies are clearly excellent approximations to the true energy levels, whereas those calculated with $k=(\lambda A)^{1 / 2}$ are very much less accurate. Similar results are easily obtained for the

Table 1. Calculated eigenvalues, $-E_{n i}$.

	$n=0$ states						
l	(1)	(2)	(3)	(4)	$n=1$ states (2)		
0	341.7715	341.8831	341.8952	341.8952	268.4722	269.6802	269.6445
1	304.0681	304.4334	304.4627	304.4628	233.1574	235.5181	235.4500
2	267.2077	268.0554	268.1104	268.1107	198.5335	202.5141	202.4313
3	231.1502	232.7840	232.8746	232.8753	164.5697	170.7122	170.6393
4	195.8573	198.6594	198.7965	198.7983	131.2361	140.1660	140.1351
5	161.2927	165.7278	165.9248	165.9282	98.5045	110.9411	110.9929
6	127.4216	134.0435	134.3164	134.3226	66.3476	83.1183	83.3060
7	94.2110	103.6719	104.0401	104.0512	34.7397	56.8013	57.1963

(1) Perturbation results, $k=20$.
(2) Perturbation results, k optimised.
(3) Variational results.
(4) Accurate values from Crandall (1983) and Lai (1983).
more highly excited states having $n \geqslant 2$, and we may conclude that the functions $\psi_{n l}^{(0)}(k)$, with k optimised, are excellent first approximations to all the bound states.

Energy levels of greater accuracy can be obtained quite easily by using variational trial functions which consist of linear combinations of the functions $\psi_{n l}^{(0)}(k)$, since these constitute a suitable complete orthonormal set for any fixed k. If we solve the appropriate secular equation, each eigenvalue can be optimised in turn and still yields a rigorous upper bound to one of the energy levels (MacDonald 1933), but the choice of k is expected to be much less critical once we include a few more terms of the set $\left\{\psi_{n l}^{(0)}(k)\right\}$. It turns out that, with k chosen so as to optimise $E_{0 l}$ (equation (9) above) the off-diagonal matrix element $\left\langle\psi_{0 l}^{(0)}\right| H_{0}+H_{1}\left|\psi_{1 i}^{(0)}\right\rangle$ vanishes identically, showing that this choice of k is optimal for any linear combination of $\psi_{0 l}^{(0)}$ and $\psi_{1 i}^{(0)}$. To obtain greater accuracy for the $n=0$ eigenvalues, it is sufficient to solve a 2×2 secular equation based on $\psi_{0!}^{(0)}$ and $\psi_{2 l}^{(0)}$ only with k chosen to optimise E_{01}. We then obtain the 'variational' results of table 1, and we note that Bessis et al (1982) obtained similar accuracy in their variational calculations based on Jacobi functions but required linear combinations of at least seven compared with just two employed here.

Appendix

The integrals $\langle m l| \exp \left(-\lambda r^{2}\right)|n l\rangle$ may be written conveniently

$$
\begin{equation*}
\langle m l| \exp \left(-\lambda r^{2}\right)|n l\rangle=\frac{1}{2} N_{m l} N_{n l} I(m, n ; \mu) / k^{l+3 / 2} \tag{A1}
\end{equation*}
$$

where

$$
\begin{equation*}
I(m, n ; \mu)=\int_{0}^{\infty} \mathrm{e}^{-(1+\mu) x} x^{p} L_{m}^{p}(x) L_{n}^{p}(x) \mathrm{d} x \tag{A2}
\end{equation*}
$$

and we have written

$$
\begin{equation*}
x=k r^{2}, \quad \mu=\lambda / k, \quad p=l+\frac{1}{2} \tag{A3}
\end{equation*}
$$

The normalisation constant $N_{m l}$ is obtained easily as a special case of (A1), using the
standard result (Abramowitz and Stegun 1965, (As) (22.2.12))

$$
\begin{equation*}
I(m, n ; 0)=\Gamma(n+p+1) \delta_{m n} / n! \tag{A4}
\end{equation*}
$$

When $\mu \neq 0$, we rewrite

$$
\begin{equation*}
I(m, n ; \mu)=t^{p+1} \int_{0}^{\infty} \mathrm{e}^{-y} y^{p} L_{m}^{p}(t y) L_{n}^{p}(t y) \mathrm{d} y \tag{A5}
\end{equation*}
$$

where

$$
\begin{equation*}
t=1 /(1+\mu)=k /(k+\lambda) . \tag{A6}
\end{equation*}
$$

Now, using as (22.12.7), we may write
$L_{m}^{p}(t y)=(1-t)^{m} \Gamma(m+p+1) \sum_{i=0}^{m} \frac{1}{\Gamma(i+p+1)(m-i)!}\left(\frac{t}{1-t}\right)^{i} L_{i}^{p}(y)$
and similarly for $L_{n}^{p}(t y)$. Thus, on account of (A4), we have finally

$$
\begin{align*}
I(m, n ; \mu)= & t^{p+1}(1-t)^{m+n} \Gamma(m+p+1) \Gamma(n+p+1) \\
& \times \sum_{i=0}^{\min (m, n)} \frac{1}{\Gamma(i+p+1) i!(m-i)!(n-i)!}\left(\frac{t}{1-t}\right)^{2 i}, \tag{A8}
\end{align*}
$$

which yields equation (6) of the text.

References

```
Abramowitz M and Stegun I 1965 Handbook of Mathematical Functions (New York: Dover)
Banerjee K 1979 Proc. R. Soc. A 368 155-62
Bessis N, Bessis G and Joulakian B 1982 J. Phys. A: Math. Gen. 15 3679-84
Crandall R E 1983 J. Phys. A: Math. Gen. 16 L395-9
Killingbeck J 1981 J. Phys. A: Math. Gen. 14 1005-8
Lai C S 1983 J. Phys. A: Math. Gen. 16 L181-5
MacDonald J K L 1933 Phys. Rev. }43\mathrm{ 830-3
Messiah A 1961 Quantum Mechanics (New York: Wiley)
Stephenson G 1977 J. Phys. A: Math. Gen. 10 L229-32
```

